Понятия со словосочетанием «кубический корень»

Связанные понятия

Гиперко́мпле́ксные числа — различные расширения вещественных чисел, такие как комплексные числа, кватернионы и пр.

Подробнее: Гиперкомплексное число
Теорема котангенсов — тригонометрическая теорема, связывающая радиус вписанной окружности треугольника с длиной его сторон. Теорему котангенсов удобно использовать при решении треугольника по трём сторонам.
Составно́е число́ (в XIX веке также сложное число) — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух или более натуральных чисел, бо́льших 1.
В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным.

Подробнее: Квадратное треугольное число
Полный квадрат или квадратное число — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень которого тоже целый.
В математике, несократимая дробь (также приведённая дробь) — дробь, которую невозможно сократить. Иначе говоря, значение несократимой дроби не допускает более простое представление в виде дроби. В случае обыкновенных дробей «более простое» означает: с меньшим (но натуральным) знаменателем.
Чи́сто мни́мое число́ — комплексное число с нулевой действительной частью. Иногда такие числа называются просто мнимыми числами, но этот термин также используется для обозначения произвольных комплексных чисел с ненулевой мнимой частью. Ранее «мнимыми числами» называли любые комплексные числа.
Функция Гильберта, ряд Гильберта и многочлен Гильберта градуированной коммутативной алгебры, конечно порождённой над полем — это три тесно связанных понятия, которые позволяют измерить рост размерности однородных компонент алгебры.
Трансценде́нтное число́ (от лат. transcendere — переходить, превосходить) — это вещественное или комплексное число, не являющееся алгебраическим — иными словами, число, которое не может быть корнем многочлена с целочисленными коэффициентами (не равного тождественно нулю). Можно также заменить в определении многочлены с целочисленными коэффициентами на многочлены с рациональными коэффициентами, поскольку корни у них одни и те же.
Квадратный корень из матрицы — расширение понятия числового квадратного корня на кольцо квадратных матриц.
Характеристический многочлен матрицы — многочлен, определяющий её собственные значения.
В математике, симметрической алгеброй S(V) (также обозначается Sym(V)) векторного пространства V над полем K называется свободная коммутативная ассоциативная K-алгебра с единицей, содержащая V.

Подробнее: Симметрическая алгебра
В математике (общей алгебре) многочлен от нескольких переменных над полем называется гармоническим, если лапласиан этого многочлена равен нулю.

Подробнее: Гармонический многочлен
Выпуклый многогранник — частный случай многогранника, пересечение конечного числа замкнутых полупространств.
Теорема о разностях — теорема, связывающая понятия производной и прямой конечной разности высших порядков для степенной функции натурального показателя степени.
Одночлен (также моном) — простое математическое выражение, прежде всего рассматриваемое и используемое в элементарной алгебре, а именно, произведение, состоящее из числового множителя и одной или нескольких переменных, взятых каждая в неотрицательной целой степени .
В математике, норма́льная фо́рма — простейший либо канонический вид, к которому объект приводится эквивалентными преобразованиями.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Псевдопростое число — натуральное число, обладающее некоторыми свойствами простых чисел, являясь тем не менее составным. В зависимости от рассматриваемых свойств существует несколько различных типов псевдопростых чисел.
Важнейшими с точки зрения приложений характеристических функций к выводу асимптотических формул теории вероятностей являются две предельные теоремы — прямая и обратная. Эти теоремы устанавливают, что соответствие, существующее между функциями распределения и характеристическими функциями, не только взаимно однозначно, но и непрерывно.

Подробнее: Прямая и обратная предельная теорема
Алгебраическая сумма — это выражение, которое можно представить в виде суммы положительных и отрицательных чисел.
Полунорма или преднорма — обобщение понятия норма; в отличие от последней, полунорма может равняться нулю на ненулевых элементах пространства.
Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.
Факторизация многочлена — представление данного многочлена в виде произведения многочленов меньших степеней.
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Формулы сокращённого умножения многочленов — часто встречающиеся случаи умножения многочленов. Многие из них являются частным случаем бинома Ньютона. Изучаются в средней школе в курсе алгебры.
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...
Одноро́дный многочле́н — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Квадратичная форма задается однородным многочленом второй степени, бинарная форма - однородным многочленом любой степени от двух переменных.
Дели́мость — одно из основных понятий арифметики и теории чисел, связанное с операцией деления. С точки зрения теории множеств, делимость целых чисел является отношением, определённым на множестве целых чисел.
А́лгебра Ли — объект общей алгебры. Естественно появляется при изучении инфинитезимальных свойств групп Ли.
k-Смежностный многогранник — это выпуклый многогранник, в котором любое k-элементное подмножество его вершин является множеством вершин некоторой грани этого многогранника.
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Рациональная функция — это дробь, числителем и знаменателем которой являются многочлены.
Характер кубического вычета — теоретико-числовая функция двух аргументов, являющаяся частным случаем символа степенного вычета. Также является характером в простом поле.
Метрика Хаусдорфа есть естественная метрика, определённая на множестве всех непустых компактных подмножеств метрического пространства. Таким образом, метрика Хаусдорфа превращает множество всех непустых компактных подмножеств метрического пространства в метрическое пространство.
Теоре́ма Тоне́лли — Фуби́ни в математическом анализе, теории вероятностей и смежных дисциплинах сводит вычисление двойного интеграла к повторным.
Факторизация целых чисел для больших чисел является задачей большой сложности. Не существует никакого известного способа, чтобы решить эту задачу быстро. Её сложность лежит в основе некоторых алгоритмов шифрования с открытым ключом, таких как RSA.
В интегрировании, разложение дробей позволяет интегрировать рациональные функции. Любая рациональная функция может быть представлена в виде суммы некоторого многочлена и некоторого числа дробных функций. Каждая дробь имеет знаменатель в виде многочлена первой или второй степени, причём многочлен в знаменателе, в свою очередь, также может быть возведён в некоторую положительную целую степень. (В случае комплексной переменной, знаменатели являются многочленами первой степени, и эти многочлены могут...
Метод площадей — метод решения геометрических тождеств путём подсчёта площадей фигур разными способами.
Формула Вика — формула теории вероятностей, выражающая математическое ожидание многочлена от координат гауссовского вектора через элементы матрицы ковариаций. Одним из её применений является связь между средним значением полинома от следов степеней случайной матрицы большого размера и родами поверхностей, получаемыми склейкой заданных многоугольников при различных отождествлениях сторон.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Неравенство четырёхугольника — неравенство, выполняющееся для любых четырёх точек метрического пространства, в котором справедливо неравенство треугольника. Его геометрический смысл заключается в том, что разность двух сторон четырёхугольника не превосходит суммы двух других сторон.
Теорема косинусов — теорема евклидовой геометрии, обобщающая теорему Пифагора на произвольные плоские треугольники.
Точное нахождение первообразной (или интеграла) произвольных функций — процедура более сложная, чем «дифференцирование», то есть нахождение производной. Зачастую, выразить интеграл в элементарных функциях невозможно.

Подробнее: Методы интегрирования
Изометрия — биекция между метрическими пространствами, сохраняющая расстояния между точками.
Теорема о приведении матрицы к диагональной форме — утверждение о возможности приведения любой вещественной квадратной матрицы к диагональному виду при помощи умножения на две вещественные ортогональные матрицы. Допускает обобщение на случай любой вещественной матрицы. Имеет большое значение в линейной алгебре и вычислительной математике.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом (или собственным значением) линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная...
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я